By Topic

Study and resolution of singularities for a 6-DOF PUMA manipulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fan-Tien Cheng ; Inst. of Manuf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Tzung-Liang Hour ; York-Yin Sun ; Tsing-Hua Chen

Upon solving the inverse kinematics problem of robot manipulators, the inherent singularity problem should always be considered. When a manipulator is approaching a singular configuration, a certain degree of freedom will be lost such that there are no feasible solutions of the manipulator to move into this singular direction. In this paper, the singularities of a 6-DOF PUMA manipulator are analyzed in detail and all the corresponding singular directions in task space are clearly identified. In order to resolve this singularity problem, an approach denoted Singularity Isolation Plus Compact QP (SICQP) method is proposed. The SICQP method decomposes the work space into achievable and unachievable (i.e., singular) directions. Then, the exactness in the singular directions are released such that extra redundancy is provided to the achievable directions. Finally, the Compact QP method is applied to maintain the exactness in the achievable directions, and to minimize the tracking errors in the singular directions under the condition that feasible joint solutions must be obtained. In the end, some simulation results for PUMA manipulator are given to demonstrate the effectiveness of the SICQP method

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:27 ,  Issue: 2 )