By Topic

The hybrid grey-based models for temperature prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yo-Ping Huang ; Dept. of Comput. Sci. & Eng., Tatung Inst. of Technol., Taipei, Taiwan ; Tai-Min Yu

In this paper several grey-based models are applied to temperature prediction problems. Standard normal distribution, linear regression, and fuzzy techniques are respectively integrated into the grey model to enhance the embedded GM(1, 1), a single variable first order grey model, prediction capability. The original data are preprocessed by the statistical method of standard normal distribution such that they will become normally distributed with a mean of zero and a standard deviation of one. The normalized data are then used to construct the grey model. Due to the inherent error between the predicted and actual outputs, the grey model is further supplemented by either the linear regression or fuzzy method or both to improve the prediction accuracy. Results from predicting the monthly temperatures for two different cities demonstrate that each proposed hybrid methodology can somewhat reduce the prediction errors. When both the statistics and fuzzy methods are incorporated with the grey model, the prediction capability of the hybrid model is quite satisfactory. We repeat the prediction problems in neural networks and the results are also presented for comparison

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:27 ,  Issue: 2 )