By Topic

Filter-Based Active Damping of Voltage Source Converters With LCL Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dannehl, J. ; Inst. for Power Electron. & Electr. Drives, Christian-Albrechts-Univ. of Kiel, Kiel, Germany ; Liserre, M. ; Fuchs, F.W.

Pulsewidth modulation (PWM) voltage source converters are becoming a popular interface to the power grid for many applications. Hence, issues related to the reduction of PWM harmonics injection in the power grid are becoming more relevant. The use of high-order filters like LCL filters is a standard solution to provide the proper attenuation of PWM carrier and sideband voltage harmonics. However, those grid filters introduce potentially unstable dynamics that should be properly damped either passively or actively. The second solution suffers from control and system complexity (a high number of sensors and a high-order controller), even if it is more attractive due to the absence of losses in the damping resistors and due to its flexibility. An interesting and straightforward active damping solution consists in plugging in, in cascade to the main controller, a filter that should damp the unstable dynamics. No more sensors are needed, but there are open issues such as preserving the bandwidth, robustness, and limited complexity. This paper provides a systematic approach to the design of filter-based active damping methods. The tuning procedures, performance, robustness, and limitations of the different solutions are discussed with theoretical analysis, selected simulation, and experimental results.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 8 )