By Topic

Stack Bound Inference for Abstract Java Bytecode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shengyi Wang ; Dept. of Inf., Peking Univ., Beijing, China ; Zongyan Qiu ; Shengchao Qin ; Wei-Ngan Chin

Ubiquitous embedded systems are often resource-constrained. Developing software for these systems should take into account resources such as memory space. In this paper, we develop and implement an analysis framework to infer statically stack usage bounds for assembly-level programs in abstract Java Byte code. Our stack bound inference process, extended from a theoretical framework proposed earlier by some of the authors, is composed of deductive inference rules in multiple passes. Based on these rules, a usable tool has been developed for processing programs to capture the stack memory needs of each procedure in terms of the symbolic values of its parameters. The final result contains path-sensitive information to achieve better precision. The tool invokes a Presburger solver to perform fixed point analysis for loops and recursive procedures. Our initial experiments have confirmed the viability and power of the approach.

Published in:

Theoretical Aspects of Software Engineering (TASE), 2010 4th IEEE International Symposium on

Date of Conference:

25-27 Aug. 2010