Cart (Loading....) | Create Account
Close category search window
 

Crystallization behavior of amorphous Alx(Ge2Sb2Te5)1-x thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seo, Jae-Hee ; Faculty of Applied Chemical Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea ; Song, Ki-Ho ; Lee, Hyun-Yong

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3471799 

Crystallization properties of thermally deposited amorphous Alx(Ge2Sb2Te5)1-x (x=0.06 and 0.10) films were investigated. The crystallization was performed by both macroscopic thermal annealing and nanopulse laser illumination (λ=658 nm and beam diameter <2 μm). The Al0.10(Ge2Sb2Te5)0.90 film exhibited a very stable one-step phase transition from amorphousface-centered cubic (fcc) in the annealing temperature range of 100–300 °C. The Al0.10(Ge2Sb2Te5)0.90 film had a higher sheet resistances (RS) in both the amorphous and crystalline phases compared to the Ge2Sb2Te5 film, resulting in lower set and reset programming currents in the phase-change random-access memory. The crystallization speed (v) of the amorphous films was quantitatively and qualitatively evaluated through the analysis of the surface images and the nanopulse reflection-response curves. Conclusively, the Al atom added into Ge2Sb2Te5 serves as a center for suppression of the fcc-to-hexagonal phase transition and the v-- - value was largely improved by the proper addition of Al, e.g., v[Al0.10(Ge2Sb2Te5)0.90]>v[Ge2Sb2Te5]. Additionally, the improved v was believed to result from improvements in both the nucleation and growth processes.

Published in:

Journal of Applied Physics  (Volume:108 ,  Issue: 6 )

Date of Publication:

Sep 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.