By Topic

A unity power factor resonant AC/DC converter for high-frequency space power distribution system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jain, P.K. ; Bell-Northern Res., Ottawa, Ont., Canada ; Tanju, M.C.

This paper presents analysis and design of a resonant AC/DC converter topology, suitable for use in an advanced single-phase, sine-wave voltage, high-frequency power distribution system of the type that was proposed for a 20 kHz space station primary electrical power distribution system. The converter comprises a transformer, a double-tuned resonant network comprising of series- and parallel-tuned branches, a controlled rectifier, and an output filter. Symmetrical phase control technique that generates fundamental AC current in phase with the input voltage is employed. Steady-state analysis of the converter in continuous current mode of operation is provided, and the performance characteristics presented. The proposed converter has close-to-unity rated power factor (greater than 0.98), a wide range of output voltage control (0%-100%), low total harmonic distortion in input current (less than 8%), and high conversion efficiency. Finally, selected experimental results of a bread-board converter are presented

Published in:

Power Electronics, IEEE Transactions on  (Volume:12 ,  Issue: 2 )