By Topic

Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
James S. Hall ; Student Member, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA ; Jennifer E. Michaels

Ultrasonic guided wave imaging with a sparse, or spatially distributed, array can detect and localize damage over large areas. Conventional delay-and-sum images from such an array typically have a relatively high noise floor, however, and contain artifacts that often cannot be discriminated from damage. Considered here is minimum variance distortionless response (MVDR) imaging, which is a variation of delay-and-sum imaging whereby weighting coefficients are adaptively computed at each pixel location. Utilization of MVDR significantly improves image quality compared with delay-and-sum imaging, and additional improvements are obtained from incorporation of a priori scattering information in the MVDR method, use of phase information, and instantaneous windowing. Simulated data from a through-hole scatterer are used to illustrate performance improvements, and a performance metric is proposed that allows for quantitative comparisons of images from a known scatterer. Experimental results from a through-hole scatterer are also provided that illustrate imaging efficacy.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:57 ,  Issue: 10 )