By Topic

Strong practical stability and H disturbance attenuation for discrete linear repetitive processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dabkowski, P. ; Inst. of Phys., Nicolaus Copernicus Univ. in Torun, Torun, Poland ; Galkowski, K. ; Bachelier, O. ; Rogers, E.

Repetitive processes are a distinct class of 2D systems of both theoretical and practical interest. The original stability theory for these processes consisted of two distinct concepts termed asymptotic stability and stability along the pass respectively where the former is a necessary condition for the latter. Recently applications have arisen where asymptotic stability is too weak and stability along the pass is too strong for meaningful progress to be made. Previously reported work has introduced strong practical stability as an alternative for such cases and produced Linear Matrix Inequality (LMI) based necessary and sufficient conditions for this property to hold, together with algorithms for stabilizing control law design. This paper considers the problem of strong practical stability with guaranteed levels of performance, where a solution is developed for strong practical stability with a prescribed disturbance attenuation performance as measured by the H norm.

Published in:

Methods and Models in Automation and Robotics (MMAR), 2010 15th International Conference on

Date of Conference:

23-26 Aug. 2010