By Topic

Performance evaluation of Independent Component Analysis in an iris recognition system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bouraoui, I. ; Signal & Image Process. Lab., USTHB, Algiers, Algeria ; Chitroub, S. ; Bouridane, A.

The overall performance of any iris recognition system relies on the performance of its components, which are preprocessing, feature extraction and matching. Feature extraction is the important step of such recognition system, but it is strongly dependent on the pre-processing step that is consisting of localising and normalising the iris. In this paper, Independent Component Analysis (ICA), which is a recently developed statistical method for data analysis, is applied for extracting the features for iris region of interest that are statistically independent. Based on some mathematical criteria, the performance of ICA is evaluated by using two different subsets of CASIA-V3 iris image database. The obtained results are convincing and some future improved research works are subsequently envisaged.

Published in:

Computer Systems and Applications (AICCSA), 2010 IEEE/ACS International Conference on

Date of Conference:

16-19 May 2010