Cart (Loading....) | Create Account
Close category search window
 

Performance of coherent ASK lightwave systems with finite intermediate frequency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tonguz, O.K. ; Dept. of Electr. & Comput. Eng., State Univ. of New York, Buffalo, NY, USA ; Tanrikulu, O.M. ; Kazovsky, Leonid G.

The impact of finite intermediate frequency (IF) on the performance of heterodyne ASK lightwave systems is examined and quantified in the presence of laser phase noise and shot noise. For negligible linewidths, it is shown that certain finite choices of IF (R b,3Rb/2,2Rb,5Rb/2, etc.) lead to the same ideal bit-error-rate (BER) performance as infinite choices of IF. Results indicate that for negligible linewidths the worst case sensitivity penalty is 0.9 dB for proper heterodyne detection and occurs when fIF=1.25 Rb. For nonnegligible linewidths (e.g., when ΔνT⩾0.04) the sensitivity penalty is always less than 0.9 dB for finite choices of IF. The analysis presented does lead to a closed-form signal-to-noise ratio (SNR) expression at the decision gate of the receiver which can readily be used for BER and sensitivity penalty computations. The SNR expression provided includes all the key system parameters of interest such as system bit rate (Rb), the peak IF SNR (ξ), laser linewidth (Δν), and the IF filter expansion factor (α). The findings of this work suggest that the number of channels in a multichannel heterodyne ASK lightwave system can be increased substantially by properly choosing a small value for the IF at the expense of a small penalty <1 dB. On the negative side, IF frequency stabilization becomes a more critical requirement in multichannel systems employing small values of IF

Published in:

Communications, IEEE Transactions on  (Volume:45 ,  Issue: 3 )

Date of Publication:

Mar 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.