By Topic

Feature subspaces selection via one-class SVM: Application to textured image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiyan He ; Inst. Charles Delaunay, Univ. de Technol. de Troyes, Troyes, France ; Beauseroy, P. ; Smolarz, A.

This paper presents a feature subspaces selection method which uses an ensemble of one-class SVMs. The objective is to improve or preserve the performance of a decision system in the presence of noise, loss of information or feature non-stationarity. The proposed method consists in first generating an ensemble of feature subspaces from the initial full-dimensional space, and then making the decision by using only the subspaces which are supposed to be immune to the non-stationary disturbance. One particularity of this method is that we use the one-class SVM ensemble to carry out the feature selection and the classification tasks at the same time. Textured image segmentation constitutes an appropriate application for the evaluation of the proposed approach. The experimental results demonstrate the effectiveness of the decision system that we have developed.

Published in:

Image Processing Theory Tools and Applications (IPTA), 2010 2nd International Conference on

Date of Conference:

7-10 July 2010