By Topic

A new descriptor for textured image segmentation based on fuzzy type-2 clustering approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tlig, L. ; SICISI Unit, ESSTT, Tunis, Tunisia ; Sayadi, M. ; Fnaeich, F.

In this paper we present a novel segmentation approach that performs fuzzy clustering and feature extraction. The proposed method consists in forming a new descriptor combining a set of texture sub-features derived from the Grating Cell Operator (GCO) responses of an optimized Gabor filter bank, and Local Binary Pattern (LBP) outputs. The new feature vector offers two advantages. First, it only considers the optimized filters. Second, it aims to characterize both micro and macro textures. In addition, an extended version of a type 2 fuzzy c-means clustering algorithm is proposed. The extension is based on the integration of spatial information in the membership function (MF). The performance of this method is demonstrated by several experiments on natural textures.

Published in:

Image Processing Theory Tools and Applications (IPTA), 2010 2nd International Conference on

Date of Conference:

7-10 July 2010