Cart (Loading....) | Create Account
Close category search window
 

Scalable solutions to integral-equation and finite-element simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cwik, T. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Katz, D.S. ; Patterson, J.

When developing numerical methods, or applying them to the simulation and design of engineering components, it inevitably becomes necessary to examine the scaling of the method with a problem's electrical size. The scaling results from the original mathematical development; for example, a dense system of equations in the solution of integral equations, as well as the specific numerical implementation. Scaling of the numerical implementation depends upon many factors; for example, direct or iterative methods for solution of the linear system, as well as the computer architecture used in the simulation. Scalability is divided into two components-scalability of the numerical algorithm specifically on parallel computer systems and algorithm or sequential scalability. The sequential implementation and scaling is initially presented, with the parallel implementation following. This progression is meant to illustrate the differences in using current parallel platforms and sequential machines and the resulting savings. Time to solution (wall-clock time) for differing problem sizes are the key parameters plotted or tabulated. Sequential and parallel scalability of time harmonic surface integral equation forms and the finite-element solution to the partial differential equations are considered in detail

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:45 ,  Issue: 3 )

Date of Publication:

Mar 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.