By Topic

Modular Adaptive Control of Uncertain Euler–Lagrange Systems With Additive Disturbances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Patre, P.M. ; Dept. of Mech. & Aerosp. Eng., Univ. of Florida, Gainesville, FL, USA ; MacKunis, W. ; Dupree, K. ; Dixon, W.E.

A novel adaptive nonlinear control design is developed which achieves modularity between the controller and the adaptive update law. Modularity between the controller/update law design provides flexibility in the selection of different update laws that could potentially be easier to implement or used to obtain faster parameter convergence and/or better tracking performance. For a general class of linear-in-the-parameters (LP) uncertain Euler-Lagrange systems subject to additive bounded non-LP disturbances, the developed controller uses a model-based feedforward adaptive term in conjunction with the recently developed robust integral of the sign of the error (RISE) feedback term. Modularity in the adaptive feedforward term is made possible by considering a generic form of the adaptive update law and its corresponding parameter estimate. This generic form of the update law is used to develop a new closed-loop error system and stability analysis that does not depend on nonlinear damping to yield the modular adaptive control result.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 1 )