By Topic

Form Invariance of Maxwell's Equations: The Pathway to Novel Metamaterial Specifications for Electromagnetic Reshaping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ozgun, O. ; Dept. of Electr. Eng., Middle East Tech. Univ., Guzelyurt, Cyprus ; Kuzuoglu, M.

We present spatial-coordinate transformation techniques to control the propagation of electromagnetic fields in several surprising and useful applications. The implementation of this approach is based on the fact that Maxwell's equations are form-invariant under coordinate transformations. Specifically, the effect of a general coordinate transformation can be realized by means of an equivalent anisotropic material, in which the original forms of Maxwell's equations are still preserved in the transformed space. Constitutive parameters of the anisotropic material are determined to appropriately reflect the consequences of the coordinate transformation on the electromagnetic fields. In this paper, we introduce novel implementations and interpretations of the coordinate-transformation approach for the purpose of “reshaping” objects in electromagnetic scattering, and for reshaping and miniaturizing waveguides. We demonstrate the applications of the proposed techniques via several finite-element simulations.

Published in:

Antennas and Propagation Magazine, IEEE  (Volume:52 ,  Issue: 3 )