By Topic

A grammar based Ant Programming algorithm for mining classification rules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Olmo, J.L. ; Dept. of Comput. Sci. & Numerical Anal., Univ. of Cordoba, Cordoba, Spain ; Romero, J.R. ; Ventura, S.

This paper focuses on the application of a new ACO-based automatic programming algorithm to the classification task of data mining. This new model, called GBAP algorithm, is based on a context-free grammar that properly guides the creation of new valid individuals. Moreover, its most differentiating factors, such as the use of two complementary heuristic measures for every transition rule, as well as the way it assigns a consequent and evaluates the extracted rules, are also discussed. These features enhance the final rule compilation from the output classifier. The performance of the proposed algorithm is evaluated and compared against other top algorithms, and the results obtained over 17 diverse data sets show that our approach reaches pretty competitive and even better accuracy values than those resulting from the other algorithms considered in the experimentation.

Published in:

Evolutionary Computation (CEC), 2010 IEEE Congress on

Date of Conference:

18-23 July 2010