By Topic

Integration of functional information of genes in fuzzy clustering of short time series gene expression data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ashish Anand ; School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore ; Nikhil Ranjan Pal ; Ponnuthurai Nagaratnam Suganthan

Recent studies have shown that incorporation of available biological information often leads to biologically more relevant results. Motivated by such studies, we extend template based clustering algorithm to incorporate functional annotation information available for genes. Functional similarities between two genes are calculated based on their annotation in the Gene Ontology (GO) database. To these end three methods of calculating functional similarity are explored. We have measured the correlation between average pairwise similarity score and average membership function values to check the validity of assumption that biologically and functionally related genes are also similar in their expression profiles as well as in their GO functional annotation. We observe that Jiang and Conrath's measure is highly correlated with average membership function value of genes. So we use this method for further analysis. With the incorporation of functional similarity score, we have more choices for the objective function to find out the best clustering of gene expression data. We have performed a comparative study to find the combination of objective functions that leads to more biologically relevant information. We have found that different choices of the objective function lead to different sets of templates, while some common templates are identified by all of them. Based on the aim of the study we suggest either to use all three objectives or to use the two objectives related to functional similarity and quantization error.

Published in:

IEEE Congress on Evolutionary Computation

Date of Conference:

18-23 July 2010