By Topic

A hybrid Pareto-based local search for multi-objective flexible job shop scheduling problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junqing Li ; School of Computer, Liaocheng University, Liaocheng, 252059 ; Quanke Pan

This paper presents a hybrid Pareto-based local search (PLS) algorithm for solving the multi-objective flexible job shop scheduling problem. Three minimization objectives-the maximum completion time (makespan), the total workload of all machines, and the workload of the critical machine are considered simultaneously. In this study, several well-designed local search approaches are proposed, which consider the problem characteristics and thus can hold fast convergence ability while keep rich population diversity. Then, an external Pareto archive is developed to memory the Pareto optimal solutions found so far. In addition, to improve the efficiency of the scheduling algorithm, a speed-up method is devised to decide the domination status of a solution with the archive set. Experimental results on two well-known benchmarks show the efficiency of the proposed hybrid algorithm. It is concluded that the PLS algorithm is superior to the very recent algorithms in term of both search quality and computational efficiency.

Published in:

IEEE Congress on Evolutionary Computation

Date of Conference:

18-23 July 2010