By Topic

Crossover and the different faces of differential evolution searches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
James Montgomery ; Complex Intelligent Systems Laboratory, Faculty of Information & Communication Technologies, Swinburne University of Technology, Melbourne, Australia

Common explanations of DE's search behaviour as its crossover rate Cr is varied focus on the directionality of the search, as low values make moves aligned with a small number of axes while high values search at angles to the axes. While the direction of search is important, an analysis of moves generated by mutating differing numbers of dimensions suggests that the probability of making a successful move is more strongly related to the move's magnitude than to the number of dimensions in which it occurs. Low Cr moves are generally much smaller than those generated with high values, and more likely to succeed, but moves in many dimensions can produce greater improvements in solution quality. Although DE behaves differently at low and high Cr, both extremes can produce effective searches. Results suggest this is because low Cr searches make frequent, small improvements to all population members while high Cr searches produce less frequent, large improvements, followed by contraction of the population and a resultant reduction in move size. The interaction of F and population size with these different modes of search is investigated and recommendations made to achieve good results with both.

Published in:

IEEE Congress on Evolutionary Computation

Date of Conference:

18-23 July 2010