By Topic

Data mining using parallel Multi-Objective Evolutionary algorithms on graphics hardware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Man-Leung Wong ; Dept. of Comput. & Decision Sci., Lingnan Univ., Hong Kong, China ; Geng Cui

An important and challenging data mining application in marketing is to learn models for predicting potential customers who contribute large profit to a company under resource constraints. In this paper, we first formulate this learning problem as a constrained optimization problem and then converse it to an unconstrained Multi-objective Optimization Problem (MOP). A parallel Multi-Objective Evolutionary Algorithm (MOEA) on consumer-level graphics hardware is used to handle the MOP. We perform experiments on a real-life direct marketing problem to compare the proposed method with the parallel Hybrid Genetic Algorithm, the DMAX approach, and a sequential MOEA. It is observed that the proposed method is much more effective and efficient than the other approaches.

Published in:

Evolutionary Computation (CEC), 2010 IEEE Congress on

Date of Conference:

18-23 July 2010