By Topic

MA-SW-Chains: Memetic algorithm based on local search chains for large scale continuous global optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Molina, D. ; Dept. of Comput. Languages & Syst., Univ. of Cadiz, Cadiz, Spain ; Lozano, M. ; Herrera, F.

Memetic algorithms are effective algorithms to obtain reliable and accurate solutions for complex continuous optimization problems. Nowadays, high dimensional optimization problems are an interesting field of research. The high dimensionality introduces new problems for the optimization process, requiring more scalable algorithms that, at the same time, could explore better the higher domain space around each solution. In this work, we proposed a memetic algorithm, MA-SW-Chains, for large scale global optimization. This algorithm assigns to each individual a local search intensity that depends on its features, by chaining different local search applications. MA-SW-Chains is an adaptation to large scale optimization of a previous algorithm, MA-CMA-Chains, to improve its performance on high-dimensional problems. Finally, we present the results obtained by our proposal using the benchmark problems defined in the Special Session of Large Scale Global Optimization on the IEEE Congress on Evolutionary Computation in 2010.

Published in:

Evolutionary Computation (CEC), 2010 IEEE Congress on

Date of Conference:

18-23 July 2010