By Topic

Efficient multi-objective optimization with fitness landscape — A special application to the optimal design of alloy-steels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shen Wang ; Dept. of Autom. Control & Syst. Eng., Univ. of Sheffield, Sheffield, UK ; Mahfouf, M.

This paper reports on an efficient algorithm for locating the `optimal' solutions for multi-objective optimization problems by combining a state-of-the-art optimizer with a fitness model-estimate. This hybrid framework is introduced to illustrate how to make sufficient use of an approximate model, which includes a `controlled' process and an `uncontrolled' process during the search. With the inclusion of such approximate model in the optimization block, a global reseeding strategy based on previous data is also applied to improve the ability of the multi-objective optimizer to find global set of solutions (`pareto' solutions). To this effect, the popular algorithm, NSGA-II, and a Multi-Layer Perceptron Neural Network (MLP) are combined synergetically to show details of such processing. Furthermore, a simple (but no simpler) method for selecting the `training' data necessary for eliciting the fitness landscape model is suggested to address what are now a common engineering problems, in particular those associated with sparse data distributions and objectives converging at significantly different speeds. To test the validity of the proposed multi-objective scheme, a series of simulation experiments, using well-know benchmark functions, are conducted and are compared to those carried-out while using the original NSGA-II and SPEA-2, under similar conditions. The proposed method is also applied to the `optimal' design of alloy steels in terms of chemical compositions and processing conditions and is shown to perform very well.

Published in:

Evolutionary Computation (CEC), 2010 IEEE Congress on

Date of Conference:

18-23 July 2010