By Topic

The automotive deployment problem: A practical application for constrained multiobjective evolutionary optimisation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moser, I. ; Fac. of Inf. & Commun. Technol., Swinburne Univ. of Technol., Hawthorn, VIC, Australia ; Mostaghim, S.

State-of-the art constrained multiobjective optimisation methods are often explored and demonstrated with the help of function optimisation problems from these accounts. It is sometimes hard for practitioners to extract good approaches for practical problems. In this paper we apply an evolutionary algorithm to a factual problem with realistic constraints and compare the effects of different operators and constraint handling methods. We observe that in spite of an apparently very insular search space, we consistently obtain the best results when using a repair mechanism, effectively eliminating infeasible solutions. This runs contrary to some recommendations in the optimisation literature which propose penalty functions for search spaces where feasible solutions are sparse.

Published in:

Evolutionary Computation (CEC), 2010 IEEE Congress on

Date of Conference:

18-23 July 2010