By Topic

Evolutionary automated recognition and characterization of an individual's artistic style

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kowaliw, T. ; Fac. of Inf. Technol., Monash Univ., Clayton, VIC, Australia ; McCormack, J. ; Dorin, A.

In this paper, we introduce a new image database, consisting of examples of artists' work. Successful classification of this database suggests the capacity to automatically recognize an artist's aesthetic style. We utilize the notion of Transform-based Evolvable Features as a means of evolving features on the space, these features are then evaluated through a standard classifier. We obtain recognition rates for our six artistic styles - relative to images by the other artists and images randomly downloaded from a search engine - of a mean true positive rate of 0.946 and a mean false positive rate of 0.017. Distance metrics designed to indicate the similarity between an arbitrary greyscale image and one of the artistic styles are created from the evolved features. These metrics are capable of ranking control images so that artist-drawn instances appear at the front of the list. We provide evidence that other images ranked as similar by the metric correspond to naïve human notions of similarity as well, suggesting the distance metric could serve as a content-based aesthetic recommender.

Published in:

Evolutionary Computation (CEC), 2010 IEEE Congress on

Date of Conference:

18-23 July 2010