Cart (Loading....) | Create Account
Close category search window
 

Star-Block Design in Two-Level Survivable Optical Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jung-Shian Li ; Inst. of Comput. & Commun. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Ching-Fang Yang ; Jian-Hong Chen

An efficient fault restoration framework is proposed for accomplishing loopback recovery in optical networks. The pro posed p-cycle-based framework achieves both a minimal spare capacity requirement and a rapid restoration time. In the proposed approach, an algorithm designated as Star-Block is used to simplify the original topology to a 2-connected graph and to partition the graph into multiple blocks, where each block contains a center node and the minimum number of neighboring nodes that collectively form a complete cycle. The simplified graph is then restored to the original topology using conventional graph rules. The Block Selection algorithm is then used to assign the edges be longing to multiple blocks to an appropriate block for fault recovery purposes. Within each block, the working flows are restored in real-time via local p-cycles on the on-cycle and spoke fibers. The performance of the proposed protection framework is evaluated numerically in terms of the spare capacity to working capacity ratio and the length of the restoration path. The framework has a better spare capacity efficiency than existing loopback recovery schemes or the conventional p-cycles approach. In addition, the Star-Block decomposition algorithm shortens the average length of the restoration path and therefore reduces the restoration time. Finally, the protection scheme not only provides a differentiated recovery service for traffic with different QoS requirements in the event of single-link failures within a single block, but also supports multiple-fault restoration for the case in which multiple single-link failures occur simultaneously.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:19 ,  Issue: 2 )

Date of Publication:

April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.