By Topic

In Vivo Mapping of Brain Elasticity in Small Animals Using Shear Wave Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Emilie Mace ; ESPCI ParisTech, Institut Langevin, Paris, France ; Ivan Cohen ; Gabriel Montaldo ; Richard Miles
more authors

A combination of radiation force and ultrafast ultra-sound imaging is used to both generate and track the propagation of a shear wave in the brain whose local speed is directly related to stiffness, characterized by the dynamic shear modulus G*. When performed on trepanated rats, this approach called shear wave imaging (SWI) provides 3-D brain elasticity maps reaching a spatial resolution of 0.7 mm × 1 mm × 0.4 mm with a good reproducibility (<;13%). The dynamic shear modulus of brain tissues exhibits values in the 2-25 kPa range with a mean value of 12 kPa and is quantified for different anatomical regions. The anisotropy of the shear wave propagation is studied and the first in vivo anisotropy map of brain elasticity is provided. The propagation is found to be isotropic in three gray matter regions but highly anisotropic in two white matter regions. The good temporal resolution (~10 ms per acquisition) of SWI also allows a dynamic estimation of brain elasticity to within a single cardiac cycle, showing that brain pulsatility does not transiently modify local elasticity. SWI proves its potential for the study of pathological modifications of brain elasticity both in small animal models and in clinical intra-operative imaging.

Published in:

IEEE Transactions on Medical Imaging  (Volume:30 ,  Issue: 3 )