By Topic

F-Sign: Automatic, Function-Based Signature Generation for Malware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shabtai, A. ; Dept. of Inf. Syst. Eng., Ben-Gurion Univ., Beer-Sheva, Israel ; Menahem, E. ; Elovici, Y.

In this research, we present a new method, termed F-Sign, for automatic extraction of unique signatures from malware files. F-Sign is primarily intended for high-speed network traffic filtering devices that are based on deep-packet inspection. Malicious executables are analyzed using two approaches: disassembly, utilizing IDA-Pro, and the application of a dedicated state machine in order to obtain the set of functions comprising the executables. The signature extraction process is based on a comparison with a common function repository. By eliminating functions appearing in the common function repository from the signature candidate list, F-Sign can minimize the risk of false-positive detection errors. To minimize false-positive rates even further, F-Sign proposes intelligent candidate selection using an entropy score to generate signatures. Evaluation of F-Sign was conducted under various conditions. The findings suggest that the proposed method can be used for automatically generating signatures that are both specific and sensitive.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:41 ,  Issue: 4 )