By Topic

SiC Schottky Diodes for Harsh Environment Space Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Philippe Godignon ; Instituto de Microelectrònica de Barcelona-Centro Nacional de Microelectrònica, Consejo Superior de Investigaciones Científicas, Campus Universidad Autònoma de Barcelona , Bellaterra, Spain ; Xavier Jorda ; Miquel Vellvehi ; Xavier Perpina
more authors

This paper reports on the fabrication technology and packaging strategy for 300-V 5-A silicon carbide Schottky diodes with a wide temperature operation range capability (between -170 °C and 300 °C). These diodes have been designed for harsh environment space applications such as inner Solar System exploration probes. Different endurance tests have been performed to evaluate the diode behavior when working at a high temperature and under severe thermal cycling conditions (ranged from -170 °C to 270 °C). The radiation hardness capability has been also tested. It has been found that the hermeticity of the package in a neutral atmosphere is a key aspect to avoid an electrical parameter drift. Moreover, the use of gold metallization and gold wire bonds on the anode allows reducing the diode surface and bonding degradation when compared to Al-containing technology. On the back-side cathode contact, the Ti/Ni/Au metallization and AuGe combination have shown a very good behavior. As a result, the manufactured diodes demonstrated high stability for a continuous operation at 285 °C.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:58 ,  Issue: 7 )