By Topic

The Role of Recrystallization in the Failure of SnAgCu Solder Interconnections Under Thermomechanical Loading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mattila, T.T. ; Dept. of Electr. & Commun. Eng., Helsinki Univ. of Technol., Helsinki, Finland ; Kivilahti, J.K.

The chip scale packaged/ball grid array component boards were thermally cycled according to the IEC 68-2-14N standard (+125°C/-45°C, 15 min dwells, 5 min ramps). The as-solidified microstructures of Sn-rich solder interconnections were composed of relatively few, typically from two to five, large tin colonies distinguished by high-angle boundaries. However, during the thermal cycling tests the as-solidified microstructures transformed gradually into more or less equiaxed grain structure by recrystallization. It is suggested that cracking of solder interconnections under thermomechanical loadings is enhanced by the recrystallization, because the network of newly formed grain boundaries extending through the interconnections provide favorable paths for cracks to propagate intergranularly. The incubation time of recrystallization was about 50% of the average cycles-to-failure. The decrease of stored energy in high-stacking fault energy metals such as Sn takes place very effective by the recovery. Therefore, microstructures recrystallize only under restricted loading conditions: dynamic loading condition where strain hardening is more effective than recovery. Therefore, the experimentally observable transformation of the microstructures by recrystallization enables us, in principle, to correlate the field use loading conditions with those produced in accelerated reliability tests. Furthermore, the recrystallization provides the means to incorporate the effects of microstructural evolution into the lifetime prediction models.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:33 ,  Issue: 3 )