By Topic

A Probabilistic Appearance Representation and Its Application to Surprise Detection in Cognitive Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maier, W. ; Inst. for Media Technol., Tech. Univ. Munchen, München, Germany ; Steinbach, E.

In this work, we present a novel probabilistic appearance representation and describe its application to surprise detection in the context of cognitive mobile robots. The luminance and chrominance of the environment are modeled by Gaussian distributions which are determined from the robot's observations using Bayesian inference. The parameters of the prior distributions over the mean and the precision of the Gaussian models are stored at a dense series of viewpoints along the robot's trajectory. Our probabilistic representation provides us with the expected appearance of the environment and enables the robot to reason about the uncertainty of the perceived luminance and chrominance. Hence, our representation provides a framework for the detection of surprising events, which facilitates attentional selection. In our experiments, we compare the proposed approach with surprise detection based on image differencing. We show that our surprise measure is a superior detector for novelty estimation compared to the measure provided by image differencing.

Published in:

Autonomous Mental Development, IEEE Transactions on  (Volume:2 ,  Issue: 4 )