Cart (Loading....) | Create Account
Close category search window

On the Robustness of MIMO LMMSE Channel Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Assalini, A. ; Dept. of Inf. Eng. (DEI), Univ. of Padua, Padova, Italy ; Dall'Anese, E. ; Pupolin, S.

The robustness of the linear minimum mean square error (LMMSE) channel estimator is studied with respect to the reliability of the estimated channel correlation matrix used for its implementation. The analysis is of interest in practical applications of multiple-input multiple-output (MIMO) systems, where a perfect estimate of the channel correlation matrix is not available. The channel estimation mean square error (MSE) is analytically analyzed assuming a general structure for the estimated channel correlation matrix used to implement the LMMSE channel estimator. The obtained results are successively detailed to the case of channel correlation matrices derived by sample correlation estimation methods. It is observed that the use of a coarse estimate of the channel correlation matrix can lead to a severe degradation on the LMMSE channel estimator performance, whereas the simpler least-square (LS) channel estimator may provide comparatively better results. Nevertheless, it is shown that a robust approach, although suboptimal, relies on implementing the LMMSE channel estimator by assuming transmissions over uncorrelated channels, since, with such an assumption, the resulting estimation MSE is certainly smaller than for the LS channel estimator.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:9 ,  Issue: 11 )

Date of Publication:

November 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.