By Topic

A relevance feedback scheme based on Hidden Markov Model Regression for 3D model retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhi-yong Zhang ; Department of Computer and Electronic Engineering, Zhejiang Gongshang University, Hangzhou, CO 310080 china ; Bai-lin Yang

Relevance feedback is an iterative search technique to bridge the semantic gap between the high level user intention and low level data representation. This technique interactively determines a user's desired output or query concept by asking the user whether certain proposed 3D models are relevant or not. For a relevance feedback algorithm to be effective, it must grasp a user's query concept accurately. In this paper, we propose a relevance feedback framework based on Hidden Markov Model Regression (HMMR) in content-based 3D model retrieval systems. Given a 3D model retrieval system, we collect and store user's feedback and use HMMR to enhance the retrieval performances. Experimental results show that this algorithm achieves higher search accuracy than traditional query refinement schemes.

Published in:

Advanced Computational Intelligence (IWACI), 2010 Third International Workshop on

Date of Conference:

25-27 Aug. 2010