By Topic

An advanced Quantum-behaved Particle Swarm Optimization algorithm utilizing cooperative strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Di Zhou ; Dept. of Inf. Technol., Jiangnan Univ., Wuxi, China ; Jun Sun ; Wenbo Xu

In this paper, Quantum-behaved Particle Swarm Optimization algorithm (QPSO) is investigated from the perspective of Estimation of Distribution Algorithms (EDAs) for the first time, which proves that QPSO is a combination of EDA and Standard Particle Swarm Optimization algorithm (SPSO). Additionally, a novel cooperative quantum-behaved particle swarm optimization algorithm (CQPSO) is proposed to prevent the Evolutionary Algorithms' universal tendency of premature convergence as a result of rapid decline in diversity. It is a type of parallel algorithm in which several QPSO algorithms are simulated individually in sub-swarms with frequent recombination which plays a roll of message passing. The most effective settings of Communication Frequency and the Size of Each Sub-Swarm for this novel algorithm are studied through experiments. Our experiments also show that CQPSO is able to find better solutions than the original QPSO and SPSO with higher efficiency.

Published in:

Advanced Computational Intelligence (IWACI), 2010 Third International Workshop on

Date of Conference:

25-27 Aug. 2010