By Topic

A 140 dB-CMRR Current-Feedback Instrumentation Amplifier Employing Ping-Pong Auto-Zeroing and Chopping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Michiel A. P. Pertijs ; National Semiconductor, Delft University of Technology, Delft, Netherlands ; Wilko J. Kindt

This paper presents a precision general-purpose current-feedback instrumentation amplifier (CFIA) that employs a combination of ping-pong auto-zeroing and chopping to cancel its offset and 1/f noise. A comparison of offset-cancellation techniques shows that neither chopping nor auto-zeroing is an ideal solution for general-purpose CFIAs, since chopping results in output ripple, and auto-zeroing is associated with increased low-frequency noise. The presented CFIA mitigates these unintended side effects through a combination of these techniques. A ping-pong auto-zeroed input stage with slow-settling offset-nulling loops is applied to limit the bandwidth of the increased noise to less than half of the auto-zeroing frequency. This noise is then modulated away from DC by chopping the input stage at half the auto-zeroing frequency, reducing the low-frequency noise to the 27 nV/ white-noise level, without introducing extra output ripple. The auto-zeroing is augmented with settling phases to further reduce output transients. The CFIA was realized in a 0.5 μm analog CMOS process and achieves a typical offset of 2.8 μV and a CMRR of 140 dB in a common-mode voltage range that includes the negative supply.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:45 ,  Issue: 10 )