By Topic

Deconvolution filter design via l1 optimization technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sen-Chueh Peng ; Dept. of Electr. Eng., Nat. Yun-Lin Polytech. Inst., Taiwan ; Bor-Sen Chen

A new l1 optimal deconvolution filter design approach for systems with uncertain (or unknown)-but-bounded inputs and external noises is proposed. The purpose of this deconvolution filter is to minimize the peak gain from the input signal and noise to the error by the viewpoint of the time domain. The solution consists of two steps. In the first step, the l1 norm minimization problem is transferred to an equivalent A-norm minimization problem, and the minimum value of the peak gain is calculated. In the second step, based on the minimum peak gain, the l1 optimal deconvolution filter is constructed by solving a set of constrained linear equations. Some techniques of inner-outer factorization, polynominal spectral factorization, linear programming, and some optimization theorems found in a book by Luenberger are applied to treat the l1 optimal deconvolution filter design problem. Although the analysis of the algorithm seems complicated, the calculation of the proposed design algorithm for actual systems is simple. Finally, one numerical example is given to illustrate the proposed design approach. Several simulation results have confirmed that the proposed l1 optimal deconvolution filter has more robustness than the l2 optimal deconvolution filter under uncertain driving signals and noises

Published in:

IEEE Transactions on Signal Processing  (Volume:45 ,  Issue: 3 )