By Topic

A new approach to dealing with missing values in data-driven fuzzy modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Almeida, R.J. ; Erasmus Sch. of Econ., Erasmus Univ. Rotterdam, Rotterdam, Netherlands ; Kaymak, U. ; Sousa, J.M.C.

Real word data sets often contain many missing elements. Most algorithms that automatically develop a rule-based model are not well suited to deal with incomplete data. The usual technique is to disregard the missing values or substitute them by a best guess estimate, which can bias the results. In this paper we propose a new method for estimating the parameters of a Takagi-Sugeno fuzzy model in the presence of incomplete data. We also propose an inference mechanism that can deal with the incomplete data. The presented method has the added advantage that it does not require imputation or iterative guess-estimate of the missing values. This methodology is applied to fuzzy modeling of a classification and regression problem. The performance of the obtained models are comparable with the results obtained when using a complete data set.

Published in:

Fuzzy Systems (FUZZ), 2010 IEEE International Conference on

Date of Conference:

18-23 July 2010