Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

A robust variable step-size LMS-type algorithm: analysis and simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aboulnasr, T. ; Dept. of Electr. Eng., Ottawa Univ., Ont., Canada ; Mayyas, K.

A number of time-varying step-size algorithms have been proposed to enhance the performance of the conventional LMS algorithm. Experimentation with these algorithms indicates that their performance is highly sensitive to the noise disturbance. This paper presents a robust variable step-size LMS-type algorithm providing fast convergence at early stages of adaptation while ensuring small final misadjustment. The performance of the algorithm is not affected by existing uncorrelated noise disturbances. An approximate analysis of convergence and steady-state performance for zero-mean stationary Gaussian inputs and for nonstationary optimal weight vector is provided. Simulation results comparing the proposed algorithm to current variable step-size algorithms clearly indicate its superior performance for cases of stationary environments. For nonstationary environments, our algorithm performs as well as other variable step-size algorithms in providing performance equivalent to that of the regular LMS algorithm

Published in:

Signal Processing, IEEE Transactions on  (Volume:45 ,  Issue: 3 )