By Topic

A text-based fully automated architecture for the semantic annotation and retrieval of Turkish news videos

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dilek Küc¸ük ; Power Electronics Group, TU¨BITAK UZAY, Ankara, Turkey ; Adnan Yazici

Video texts are known to constitute an important source of information for semantic summaries of video archives. In this study, we propose a fully automated architecture for semantic annotation and later retrieval of Turkish news videos based on the corresponding video texts. At the core of the architecture is a named entity recognizer, the output of which on video texts is used as semantic annotations for the corresponding videos. The architecture also comprises components for news story segmentation, sliding text recognition, and video retrieval in addition to a news video database. The news story segmentation module makes use of the audio waveforms of the raw video files to detect the boundaries of individual news stories. The sliding text recognizer is then executed on the video segments corresponding to these news stories to extract their texts. The texts are then fed into the named entity recognizer for Turkish news texts to extract the named entities which are to be used as semantic annotations or index terms for the retrieval of these news videos. Finally, the retrieval interface of the overall architecture enables access to the annotated videos and video segments through boolean queries formed by using the previously extracted named entities. This study is significant for its proposing the first fully automated architecture for the semantic annotation and retrieval of Turkish news video archives.

Published in:

Fuzzy Systems (FUZZ), 2010 IEEE International Conference on

Date of Conference:

18-23 July 2010