Cart (Loading....) | Create Account
Close category search window

Minimum norm design of two-dimensional weighted Chebyshev FIR filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nordebo, S. ; Dept. of Signal Processing, Karlskrona Univ., Sweden ; Claesson, I.

The weighted Chebyshev design of two-dimensional FIR filters is in general not unique since the Haar condition is not generally satisfied. However, for a design on a discrete frequency domain, the Haar condition might be fulfilled. The question of uniqueness is, however, rather extensive to investigate. It is therefore desirable to define some simple additional constraints to the Chebyshev design in order to obtain a unique solution. The weighted Chebyshev solution of minimum Euclidean filter weight norm is always unique, and represents a sensible additional constraint since it implies minimum white noise amplification. This unique Chebyshev solution can always be obtained by using an efficient quadratic programming formulation with a strictly convex objective function and linear constraints. An example where a conventional Chebyshev solution is nonunique is discussed

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 3 )

Date of Publication:

Mar 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.