By Topic

Cohen's kappa coefficient as a performance measure for feature selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Susana M. Vieira ; Technical University of Lisbon, Instituto Superior Técnico, Dept. of Mechanical Engineering, CIS/IDMEC - LAETA, Av. Rovisco Pais ; Uzay Kaymak ; João M. C. Sousa

Measuring the performance of a given classifier is not a straightforward or easy task. Depending on the application, the overall classification rate may not be sufficient if one, or more, of the classes fail in prediction. This problem is also reflected in the feature selection process, especially when a wrapper method is used. Cohen's kappa coefficient is a statistical measure of inter-rater agreement for qualitative items. It is generally thought to be a more robust measure than simple percent agreement calculation, since it takes into account the agreement occurring by chance. Considering that kappa is a more conservative measure, then its use in wrapper feature selection is suitable to test the performance of the models. This paper proposes the use of the kappa measure as an evaluation measure in a feature selection wrapper approach. In the proposed approach, fuzzy models are used to test the feature subsets and fuzzy criteria are used to formulate the feature selection problem. Results show that using the kappa measure leads to more accurate classifiers, and therefore it leads to feature subset solutions with more relevant features.

Published in:

Fuzzy Systems (FUZZ), 2010 IEEE International Conference on

Date of Conference:

18-23 July 2010