By Topic

Precise tracking control of a piezoactuated micropositioning stage based on modified Prandtl-Ishlinskii hysteresis model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qingsong Xu ; Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Tomás Pereira, Taipa, Macao SAR, China ; Yangmin Li

In this paper, the hysteresis modeling and compensation are carried out and verified for a piezo-driven XY parallel micropositioning stage aiming at a sub-micron precise motion tracking control. Specifically, inverse modified Prandtl-Ishlinskii (MPI) model-based feedforward in combination with a proportional-integral-derivative (PID) feedback control algorithm is implemented for the real-time control. The MPI model is identified by optimizing the weight parameters through particle swarm optimization (PSO) to match the model output to experimental data. For the purpose of comparisons, a feedforward controller using the inverse MPI model solely is realized as well. The performance of feedforward plus feedback over stand-alone feedforward control is examined by experimental studies conducted on the prototype micropositioning stage. Results show that the combined control scheme can reduce the nonsymmetric hysteresis to a negligible level and produce a sub-micron accuracy motion tracking, which provides a sound base of practical control of the micropositioning system for micro/nano scale manipulation.

Published in:

2010 IEEE International Conference on Automation Science and Engineering

Date of Conference:

21-24 Aug. 2010