By Topic

Design of a lane detection and departure warning system using functional-link-based neuro-fuzzy networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheng-Jian Lin ; Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung County, Taiwan, R.O.C. ; Jyun-Guo Wang ; Shyi-Ming Chen ; Chi-Yung Lee

As the high growth of the number of vehicles, the traffic accidents are becoming more and more serious in recent years. In order to avoid the drivers being in danger, an intelligent vision-based system should focus on the image contents of the front the camera setting under the rear-view mirror in the vehicle. In this paper, we present a functional-link-based neuro-fuzzy network (FLNFN) structure for lane detection and departure warning system application. The proposed FLNFN model uses a functional link neural network (FLNN) to the consequent part of the fuzzy rules. This study uses orthogonal polynomials and linearly independent functions in a functional expansion of the FLNN. Thus, the consequent part of the proposed FLNFN model is a nonlinear combination of input variables. An online learning algorithm, which consists of structure learning and parameter learning, is also presented. The structure learning depends on the entropy measure to determine the number of fuzzy rules. The parameter learning, based on the gradient descent method, can adjust the shape of the membership function and the corresponding weights of the FLNN. The lane detection method and the departure warning system proposed in this paper have been successfully evaluated on a PC platform of 3.2-GHz CPU, where the average frame-rate is up to 30fps.

Published in:

Fuzzy Systems (FUZZ), 2010 IEEE International Conference on

Date of Conference:

18-23 July 2010