By Topic

Forecasting time-series for NN GC1 using Evolving Takagi-Sugeno (eTS) Fuzzy Systems with on-line inputs selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Andreu, J. ; Dept. of Commun. Syst., Lancaster Univ., Lancaster, UK ; Angelov, P.

In this paper we present results and algorithm used to predict 14 days horizon from a number of time series provided by the NN GC1 concerning transportation datasets [1]. Our approach is based on applying the well known Evolving Takagi-Sugeno (eTS) Fuzzy Systems [2-6] to self-learn from the time series. ETS are characterized by the fact that they self-learn and evolve the fuzzy rule-based system which, in fact, represents their structure from the data stream on-line and in real-time mode. That means we used all the data samples from the time series only once, at any instant in time we only used one single input vector (which consist of few data samples as described below) and we do not iterate or memorize the whole sequence. It should be emphasized that this is a huge practical advantage which, unfortunately cannot be compared directly to the other competitors in NN GC1 if only precision/error is taken as a criteria. It is also worth to require time for calculations and memory usage as well as iterations and computational complexity to be provided and compared to build a fuller picture of the advantages the proposed technique offers. Nevertheless, we offer a computationally light and easy to use approach which in addition does not require any user-or problem-specific thresholds or parameters to be specified. Additionally, this approach is flexible in terms not only of its structure (fuzzy rule based and automatic self-development), but also in terms of automatic input selection as will be described below.

Published in:

Fuzzy Systems (FUZZ), 2010 IEEE International Conference on

Date of Conference:

18-23 July 2010