By Topic

Modelling semantic context for novelty detection in wildlife scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Suet-Peng Yong ; Dept. of Information Science, University of Otago, PO Box 56, Dunedin, New Zealand ; Jeremiah D. Deng ; Martin K. Purvis

Novelty detection is an important functionality that has found many applications in information retrieval and processing. In this paper we propose a novel framework that deals with novelty detection for multiple-scene image sets. Working with wildlife image data, the framework starts with image segmentation, followed by feature extraction and classification of the image blocks extracted from image segments. The labelled image blocks are then scanned through to generate a co-occurrence matrix of object labels, representing the semantic context within the scene. The semantic co-occurrence matrices then undergo binarization and principal component analysis for dimension reduction, forming the basis for constructing one-class models for each scene category. An algorithm for outlier detection that employs multiple one-class models is proposed. An advantage of our approach is that it can be used for scene classification and novelty detection at the same time. Our experiments show that the proposed approach algorithm gives favourable performance for the task of detecting novel wildlife scenes, and binarization of the label co-occurrence matrices helps to significantly increase the robustness in dealing with the variation of scene statistics.

Published in:

Multimedia and Expo (ICME), 2010 IEEE International Conference on

Date of Conference:

19-23 July 2010