By Topic

A hybrid PSO-BP algorithm and its application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jie Hu ; School of Science, Wuhan University of Technology, China 430070 ; Xiangjin Zeng

An approach that neural network optimized with PSO algorithm is proposed in the paper. Unlike conventional training method with gradient descent method only, this paper introduces a hybrid training algorithm by combining the PSO and BP algorithm. The PSO is used to optimize the initial parameters of the BP neural network, including the weights and biases. It can effectively better the cases that network is easily trapped to a local optimum and has a slow velocity of convergence. The experiment results show the method in the paper has greater improvement in both accuracy and velocity of convergence for BP neural network.

Published in:

2010 Sixth International Conference on Natural Computation  (Volume:5 )

Date of Conference:

10-12 Aug. 2010