By Topic

Channel smurfing: Minimising channel switching delay in IPTV distribution networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

One of the major concerns of IPTV network deployment is channel switching (or zapping) delay. This delay can add up to two seconds or more, and its main culprits are synchronisation and buffering. By analysing an extensive dataset - comprising 255 thousand users, 150 TV channels, and covering a 6-month period - we have observed that most channel switching events are linear: it is very common the user switching up or down to the next TV channel. This fact led us to the proposal, in this paper, of a simple mechanism to reduce channel switching delay. Our proposal is to send the neighbouring channels (i.e., channels adjacent to the requested one) to the Set Top Box (STB) during zapping periods. If the user switches to any of these channels the switching latency is virtually eliminated, not affecting therefore user's experience. Notwithstanding the simplicity of this scheme, trace-driven simulations show that the zapping delay can be virtually eliminated for a significant percentage of channel switching requests. As an example, by sending the previous and the next channel concurrently with the requested one, for only one minute after a zapping event, switching delay is eliminated for around 45% of all channel switching requests. Furthermore, this simple scheme has a performance close to that of an ideal predictor, while the increase of bandwidth utilisation in the access link is negligible.

Published in:

Multimedia and Expo (ICME), 2010 IEEE International Conference on

Date of Conference:

19-23 July 2010