By Topic

Robust semantic sketch based specific image retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cailiang Liu ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China ; Dong Wang ; Xiaobing Liu ; Changhu Wang
more authors

Specific images refer to images one has a certain episodic memory about, e.g. a picture one has ever seen before. Specific image retrieval is a frequent daily information need and the episodic memory is the key to find a specific image. In this paper, we propose a novel semantic sketch-based interface to incorporate the episodic memory for specific image retrieval. The interface allows a user to specify the semantic category and rough area/color of the objects in his memory. To bridge the semantic gap between the query sketch and database images, in the back end, a sampling method selects exemplars from a reference dataset which contains many object instances with user-provided tags and bounding boxes. After that, an exemplar matching algorithm ranks images to retrieve the target image to match the user's memory. In practice, we have observed that query sketches are usually error prone. That is, the position or the color of an object may not be accurate. Meanwhile, the annotations in the reference dataset are also noisy. Thus, the search algorithm has to handle two kinds of errors: 1) reference dataset label noise; 2) user sketch error such as position or scale. For the former, we propose a robust sampling method. For the latter, we derive an efficient spatial reranking algorithm to tolerate inaccurate user sketches. Detailed experimental results on the LabelMe dataset show that the proposed approach is robust to both kinds of errors.

Published in:

Multimedia and Expo (ICME), 2010 IEEE International Conference on

Date of Conference:

19-23 July 2010