By Topic

A New High Efficiency Current Source Driver With Bipolar Gate Voltage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jizhen Fu ; International Rectifier, El Segundo, USA ; Zhiliang Zhang ; Yan-Fei Liu ; Paresh C. Sen
more authors

A novel bipolar current source driver (CSD) for power MOSFETs is proposed in this paper. The proposed bipolar CSD alleviates the gate current diversion problem of the existing CSDs by clamping the gate voltage to a flexible negative value (such as -3.5 V) during turn-off transition. Therefore, the proposed driver is able to turn off the MOSFET much faster with a higher effective gate current. The idea presented in this paper can also be extended to other CSDs to further improve the efficiency with high output currents. The experimental results verify the benefits of the proposed CSD. For buck converters with 12 V input at 1 MHz switching frequency, the proposed driver improves the efficiency from 80.5% using the existing CSD to 82.5% (an improvement of 2%) at 1.2 V/30 A, and at 1.3 V/30 A output, from 82.5% using the existing CSD to 83.9% (an improvement of 1.4%).

Published in:

IEEE Transactions on Power Electronics  (Volume:27 ,  Issue: 2 )