By Topic

An SSVEP BCI to Control a Hand Orthosis for Persons With Tetraplegia

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ortner, R. ; Guger Technol. OG, Schiedlberg, Austria ; Allison, B.Z. ; Korisek, G. ; Gaggl, H.
more authors

Brain-computer interface (BCI) systems allow people to send messages or commands without moving, and hence can provide an alternative communication and control channel for people with limited motor function. In this study, we demonstrate a BCI system for orthosis control. Our BCI was asynchronous, meaning that subjects could move the orthosis whenever they wanted, instead of pacing themselves to external cues. Seven subjects each performed two tasks with a BCI that relied on steady state visual evoked potentials (SSVEPs). Although none of the subjects had any training, six subjects showed good control with a positive predictive value (PPV) higher than 60%. The overall PPV for all subjects reached 78% ±10%. However, the false positive rate was high, and some subjects dislike the flickering lights required in SSVEP BCIs. In follow-up work, we hope to reduce both the false positive rate and the annoyance produced by flickering lights by hybridizing this BCI with a “brain switch,” which could allow people to turn the SSVEP system on or off using a second type of brain activity when they do not wish to control the orthosis. We also hope to validate this approach with people with tetraplegia.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 1 )