By Topic

Asymmetric-Circular Shaped Slotted Microstrip Antennas for Circular Polarization and RFID Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nasimuddin ; Institute for Infocomm Research, Singapore ; Zhi Ning Chen ; Xianming Qing

Novel asymmetric-circular shaped slotted microstrip patch antennas with slits are proposed for circularly polarized (CP) radiation and radio frequency identification (RFID) reader applications. A single-feed configuration based asymmetric-circular shaped slotted square microstrip patches are adopted to realize the compact circularly polarized microstrip antennas. The asymmetric-circular shaped slot(s) along the diagonal directions are embedded symmetrically onto a square microstrip patch for CP radiation and small antenna size. The CP radiation can be achieved by slightly asymmetric (unbalanced) patch along the diagonal directions by slot areas. Four symmetric-slits are also embedded symmetrically along the orthogonal directions of the asymmetric-circular shaped slotted patch to further reduce antenna size. The operating frequency of the antenna can be tuned by varying the slit length while keeping the CP radiation unchanged. The measured 3-dB axial-ratio (AR) bandwidth of around 6.0 MHz with 17.0 MHz impedance bandwidth is achieved for the antenna on a RO4003C substrate. The overall antenna size is 0.27λo × 0.27λo × 0.0137λo at 900 MHz.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:58 ,  Issue: 12 )